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Summary

The history and current situation of computers in education is discussed in terms of the
development of psychological theories. 'Intelligent’ Tutoring systems have been claimed to
represent a significant improvement over traditional use of computers in education due to their
added 'intelligence’. The amount and the form of intelligence in several educational media is
analyzed. It is concluded that the amount of intelligence that goes into traditional systems
probably has been underestimated. The problems with student models and learner models,
which are the core components of an ITS, are briefly discussed. It is proposed to replace the
quest for ‘intelligence’ by a quest for ‘efficiency’ when it comes to practical application of
computerized education.

1 INTRODUCTION: A HISTORICAL PERSPECTIVE

1.1 Behaviourism

Even before the arrival of computers educational designers had constructed 'learning
machines' that produced sequences of simple teaching transactions. Each interaction was
initiated by the machine, displaying a question like 'apple = a) prune b) poule ¢) pomme'. The
student was supposed to respond by pressing one out of several buttons. The feedback and
the next interaction were generally a function of the last response (fig. 1).

Pressey’s 1927 device omitted questions previously answered correctly.

The machines were as much a reflection of then current technology as of the then prevailing
psychological paradigm: Behaviourism. The whole history of artificial learning environments
can be seen as an interplay between available technology and popular learning and teaching
theory.

When the computer arrived on the scene, behaviourism with its stimulus-response paradigm
was still the leading psychological theory. This theory explained how even pigeons could
learn to produce simple responses, like picking on a button, when a stimulus such as a red




light was presented. Complex behaviour could be trained by sequencing of simple responses.
No wonder that the early educational computer software was structured similar to the old
generation of non computerized learning machines. A lesson consisted again out of a series of
interactions. For each unit of interaction, the stimulus, the possible responses, and the
feedback for each of these responses was represented. Authoring systems that were used to
develop courseware, usually offered the possibility to branch to other frames based on the
history of student responses rather than on the recent response alone. Although this feature
allowed authors to deviate from the basic behaviouristic premises that appeared to be valid for
pigeons, they generally did not use this possibility. The vast majority of the programs from
those early days can still best be described as simple drill & practice. Some authors did not
even apply the limited and rigid interactivity of behaviouristic practice & drill. Their only
model for teaching material was the book and so they mimicked books in hardly-interactive
programs that were very appropriately called ‘page-turners'.
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1.2 Cognitivism

The early period

In the 60's and 70's this situation changed gradually. Psychologists started to 'open' the black
box in our skull. Behavior was no longer seen as a series of stimulus-reponse pairs but as a
consequence of complex cognitive processes. Several psychologists formulated global
cognitive mechanisms (Bruner, 1964, 1966; Ausubel, 1978), that is processes between the
stimulus and the response, using knowledge as a basic intermediary concept. Based on these
processes, principles of instructional design were formulated (Gagné, 1979; Merill, 1983;
Scandura, 1983). These principles were applied in the design of courseware. Elements and
structure of the course reflected the elements and structure of knowledge in the domain to be
taught. Diagnosis would sometimes result in remedial teaching rather than in the behavioristic
approach of presenting the same stuff again. Most of the CAI today is still designed with these
two latter instructional principles in mind.

The Al period

The development of detailed cognitive theories was accelerated and stimulated by the
developments in the field of Artificial Intelligence (and vice versa). The representation of
knowledge as a distinct entity became focus of the research (Levesque, 1986). Introspection,
which was totally denounced by the behaviourists, returned in the form of thinking aloud
protocols. Subjects were asked for instance to solve a problem while thinking aloud and
researchers tried to make sense of these data. The analysis of these protocols became a valid




method to collect data on human knowledge representation and cognitive reasoning. When
building models of cognition using Al-techniques the thinking aloud protocols served both as
sources for the initial implementation of models as well as criteria for evaluation for the final
implemented cognitive models. It appeared however to be difficult to formulate a formal
method to evaluate AI-models of cognition in the way statistics became the formal method to
evaluate quantitative data.

Part of the Al-community claimed --that humans were nothing more than complex computers
and that most intellectual tasks could be done by computers near the end of the century--.
Although it was never stated explicitly, this claim could be interpreted such that the task of
teaching could be done as well by machines as by humans. Thus it was implicitly assumed by
some that 'Intelligent' tutoring systems could replace the teacher in the classroom. To achieve
the goals of building 'Intelligent' systems, like expert systems, much effort was put into the
analysis of human experts knowledge representations and problem solving behaviour.
Because knowledge now appeared to be 'stuff' that could be represented separately, education
became the transfer of this stuff from the expert to the novice. So education was studied by
examining the differences between novices and experts and the development in between. It
should be stressed that not all ITS researchers shared the goal of building an artificial teacher.
Many had the more modest claim that, by representing domain, diagnostic, and didactic
knowledge explicitly the resulting systems would be more flexible than the traditional CAI
systems.

The traditional, early cognitive and behaviorist, CAI programs were criticized eg. because
generally these rigid systems did base their pre-programmed interventions on the last response
only. In 'Intelligent' systems a dynamic model of the student was maintained and behavior of
the system was generated using conditions from this cognitive model.

1.3 Parallel developments

Discovery Environments

Parallel to the Al triggered development of ITS systems, a separate reaction to the early
cognitive CAI became apparent. These old CAI programs resulted essentially in systems
initiated actions because teaching was seen as the transfer of knowledge from the system to the
student. In 1961 already Bruner pointed to the possible cognitive relevance of the act of
discovery (Bruner, 1961). Papert took up this lead and explicitly proposed that students
would profit most from discovering themselves the basic principles of the domain (eg.
mathematics or physics; Papert, 1980). The implicit pedagogical assumption was that, given
the right discovery environment, in this case the LOGO environment, students on their own
initiative and without any support would find their way. Thus a cognitive diagnosis would be
unnecessary and no student model would have to be maintained by the system. Most research
in this area used anecdotal evidence and it was very hard to evaluate the claims that discovery
resulted in the acquisition of 'powerful (context independent) ideas'. In practice many
discovery environments included some guidance of the student (Abelson & DiSessa, 1980).

Tools

Shortly after the LOGO-developments, the software technology provided users with several
tools like powerful mathematical and statistical packages, simulation environments etc. In a
few years, most computers in the classroom, especially in engineering and science, were used
as tools rather than as artificial teachers (van Dijk, 198x). Not only the availability of these
tools was instrumental in bringing about this shift in educational use of computers. This trend
also was reinforced because early CAI programs (drill & practice / page-turners) tended to be
very dull and programs with a more cognitive approach tended to be very expensive in terms
of development.




1.4 Connectionism

By the end of the eighties the cognitivist paradigm was heavily questioned by what was
labeled as Connectionism. Connectionists focussed on massive parallel distributed
computations and simulations of neural networks. This paradigm succeeded to build systems
that could learn to discriminate between patterns. The representation of knowledge in
connectionist systems is by a set of weights while in AI-models of cognition it is by logical
statements. Learning is reflected in changes of the weights and the sole learning mechanism is
learning from examples of patterns.

Although Connectionism appears to deal well with primary and immediate cognitive
processes, like recognition, it is difficult to see how connectionist systems can be used to
model complex problem solving where students might get stuck and restart or use 'repair’
strategies.

1.5 Situated Cognition

Whether it was the appearance of the new fad 'connectionism' or the disappointment with the
obvious failure to build really intelligent systems before the end of the century is unclear, but
many Al-based cognitive scientists turned away from their roots. Most notably the 'father’ of
educational expert systems, W.C. Clancey (Clancey, 19907) and the 'father’ of student-model
(malrule-) based ITS, J.S. Brown (Brown, 19907?). They currently support the approach
advocated by the field of Situated Cognition. Situated Cognition denounces the basic Al
premise that knowledge can be seen as some context independent 'stuff' that can be ‘poured’
in a student. On the contrary, according to the situated cognitive scientists, all knowledge only
becomes knowledge in some context and it is impossible to represent this in a subject's head.
The field of situated cognition is so recent that it is difficult to infer the implications for
computers in educations. It appears however that some older ideas in education like project-
education, on the job training, and cognitive apprenticeship re-emerge. The role of the
computers could become more one of a communication tool linking learners to eachother and
to real contexts. Anyway, according to situated cognition theories, most education should be
in real contexts like the workplace and the knowledge transferred should be very
contextualized eg. "expertise stories" (Orr, 1986; Bransford, 1987). Less outspoken views
hold that this might be a fruitful approach for a few domains (eg. motor- and other automated
skills like skiing) or parts of domains while in other areas the idea of transferring knowledge
to the student is still a valid approach (Sandberg & Wielinga, 1991).

2. WHERE IS THE INTELLIGENCE?

2.1 Non-interactive environments

An educational environment consists of a set of materials and humans which can interact to
achieve certain educational goals. In the following we will analyze how much "intelligenge’
goes into such an environment.

Let's consider a textbook. A textbook is not a formal description of the domain. A formal
description would in itself suffice as a complete description and could be constructed on the
basis of an analysis of the domain alone. A textbook is more. The difference is clear for the
domain of programming languages. Most programming languages come with a (rather formal)
reference manual. Nevertheless there is obviously a need for another representation when it
comes to teaching this programming language. In the instructional textbook the author has not
only the domain but also the student in mind. The material is presented so that learning will be
optimal. Since the textbook is the same for all students the author has an average student in
mind. In fact a textbook is the frozen representation of lots of intellectual labor of the author in
which a non-specific model of the student was used. For instance the author will estimate the
average knowledge-level of the student at the beginning of the book. The intelligence of the
author of a textbook also might be used to anticipate upon common misconceptions and try to
provide counter-examples. The important ongoing question for each educational system is
what and how to present it next. It is in answering this question that the intelligence is needed.




Of course students without the anticipated misconception will go through a counter-example
which is more or less unnecessary for these particular students. Or students that have
capabilities above the assumed average student might become bored. In other words, the
decision about what to do next and how to do it was for these students sub-optimal.
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2.2 Interactive environments

But if we come to traditional CAI the superfluous counter-example can be avoided. A good
author of traditional CAI does almost the same as the author of a textbook but instead of
anticipating an average student, several types of students are anticipated. The work a
courseware-author puts into course design can be compared to the labor of a chess player
studying his opening repertoire. Trying to anticipate each move of the opponent, to analyze its
meaning (plan), and to find the best response. What these people have in common is that they
try to solve as much of their problem beforehand. The diagnostic knowledge, and the
knowledge of teaching strategies that the author uses in solving this problem is not explicitly
represented, only the solutions are. The knowledge therefore is embedded in the concrete
contexts of the resulting series of teaching events (fig.3). Of course the constructed artifact
(opening repertoire or CAI-program) in itself is not intelligent. The intention here is to show
that they both are the result of intellectual efforts and hence their performance might be
comparable to artifacts like ITS that are labeled 'intelligent' because they can generate (very
often the very same) solutions.

In terms of the chess player, traditional CAI knowledge is restricted to the opening repertoire,
it can only deal with situations that have been predicted. 'Intelligent’ tutoring systems have
generative knowledge. An ITS can dynamically generate the solution of the question which
educational action is the best in the didactic circumstance even if the situation has not been
predicted in detail.

2.3 Discovery environments

Most intelligence, either used by the author in preparation of, or embedded in, a system results
in better decisions on the 'what and how' of subsequent teaching actions. It is implicitly
assumed that control about the 'what and how' can be executed by the system. For discovery
environments however, it is not the system but the student who is in control. This also holds
for the situation where the computer is used as a tool. In these cases the intelligence generally
does not reside in the computer but elsewhere within the educational context. For instance in
sessions where the computer is used as a tool, students usually have some form of a
workbook with a clear suggested sequencing of the problems to be solved. Often there is also
some assistant walking around. Current research projects like HYPOCAMPE (Forte &
Bierman, 1991) try to add some intelligence to the 'computer as a tool' environment by
diagnosing the students behavior. From that diagnosis the entry point and recommended path
in a hypertext environment is determined. The implementation of the hypertext is such that
students have the idea they are in control but in reality there is hidden control by the computer.

2.4 Collaborative environments

Recent research on collaborative CAI has focused on optimalisation of the composition of the
dyads of students by use of cognitive parameters. The idea was that part of the needed
intelligence could be drawn from the co-student. Preliminary results, derived from a too small
sample size, indicate that students behaved in accordance with the prediction that the
(introvert) more able students would be forced into the role of teacher. However, contrary to
what would be expected, the data suggest that this behavior did not result in better learning
for the less able student (Balk & Bierman, 1989).

3. STUDENT MODELS AND LEARNER MODELS

How is it possible to know what teaching action, or treatment, in a given context is best? The
diagnosis and representation of the student's cognitive state is the kernel aspect of most ITS.
In most architectures this representation is the database where all components refer to. At any
moment 't' in the learning history this cognitive state is called the (dynamic) 'Student Model'.
The problem of how to select the appropriate optimal teaching action or treatment, given that




the Student Model at that point in time is known, has been given less attention. It was realized
that to solve this latter problem a detailed theory on individual learning should be available.
Such a theory should then be implemented as a Learner Model. A sharp distinction between
Student- and Learner Model is necessary: The Student Model is a series of snapshots of the
students’ cognitive states. The Learner Model describes how individuals learn. Recently it has
been proposed that given the Student Model at time 't' and a model of how learning proceeds
the system could calculate the Student Model at time 't+1' for all different possible treatments
(VanLehn, 1991). Then the system should be able to decide which of the possible treatments
was the best.

3.1 Practical and fundamental problems

The natural temporal order, where diagnosis precedes treatment, is not the only reason that
explains why research has focussed on Student Models. The fact that there are little or no
good theories of individual learning that can be implemented as a model of the learner is
another one. Instead of the generative approach based upon running a Learner Model, as
described in the previous paragraph, the choice of treatment also might be done directly on the
basis of the Student Model. In that case expert didactic knowledge derived from human
teachers is used to infer the subsequent treatment. The assumption is that good human teachers
implicitly 'know' how students learn. Since this knowledge is ‘compiled’ they can not
explicitly formulate this in the form of a Learner Model. But rules might be deduced from the
actual behavior in specific didactic situation which reflect their Learner Model. It has been tried
to elicit these rule by analysis of thinking aloud protocols of teachers in one-to-one tutoring
session but the results are very meager (Kamsteeg & Bierman, 1991) .

* Student models: the bandwidth problem.

Soon after it became clear that diagnosis of a student was crucial in ITS design, it was realized
that there was a fundamental constraint on this process of cogntivie diagnosis. A Student
Model could never be assessed with enough detail due to the limited bandwidth in the
communication between the student and the system (Goldstein, 1982). Some research has
focussed on the construction of interfaces which increase this bandwidth and permit the
observation of more intermediate problem solving steps (Bierman, Kamsteeg & Sandberg,
1991). Part of this problem also might be alleviated by having the learner model calculate
those intermittent cognitive states of the student for which the system lacks direct information.
Of course it is not possible to calculate the Student Model from scratch since the initial state at
t=0 is unknown. So initial cognitive diagnosis remains necessary.

* Learner models: problematic fit on studentmodels; poor treatments

Most models of learning in the field of computer learning are considered to be psychologically
invalid. And even if these models could be used as a Learner Model in an ITS it is not a
straightforward task to map their representations of the domain knowledge onto the
representation of knowledge in Student Models. The treatments, to train these systems,
consists of examples and/or counter-examples. In real education there is a richer variety in
treatments. It is difficult to formalize these rich treatments especially if natural language plays
an important role.

SOAR, which is a more recently developed model for learning, claims psychological validity
(Simon, 1991). For this particular Learner Model the problem of mapping knowledge
representations is prominent. Knowledge in SOAR is 'hairy’ and difficult to inspect.
Furthermore it is computationally impossible to run SOAR for each possible treatment and still
have reasonable response times.

3.2 Empirical data

3.2.1 The extra value of dynamic student models

If the dynamic Student Model is the basic element in ITS then it should follow that systems
where this element is replaced by a static student model are less efficient when it comes to




teaching. It is astonishing that hardly any relevant empirical research exists that tries to
evaluate the extra value of a dynamic student model. Most experiments do not compare the
dynamic model with a static model but with no model at all. In other words, even the
intelligence that is reflected in textbooks is removed. Furthermore they do not control for time
on task. Sleeman did an experiment where he compared treatments based upon a cognitive
diagnosis with a uniform treatment of showing the correct solution (Sleeman, 1989). No
difference between the two treatments could be asessed. This experiment has informally been
criticized because of the choice of an improper domain (vanLehn, 1991) and because of the
use of improper statistics (Elsom-Cook, 1991). These objections are rather ad-hoc. The only
reasonable objection seems that the cognitive treatment is rather crude. It boils down to just
comunicating the cognitive diagnosis to the student. It is the psychoanalytical assumption that
one will 'heal' as soon as one knows the problem. This assumption is highly questionable but
on the other hand there are no other obvious treatments available.

3.2.2 Non verbal and Affective components?
There is ample evidence that computer assisted education is more effective than classroom
teaching. Its results in terms of efficiency might be compared with human teaching of small
groups. However, when comparing computer assisted teaching with individual human
coaching it apppears that the human is more effective than the computer, although the evidence
is not overwhelming (Bloom, 1984). From experiments where protocols were taken from
human coaches, it might be concluded that these human teachers did not maintain an elaborate
and dynamic student model (Kamsteeg & Bierman, 1991). Most 'what and how to do next'
decisions of the human coach were based upon the last action of the student and a general
classification (like 'weak student'). There might be three, not necessarely mutual exclusive,
explanations of the finding that human coaches still outperform computers as teachers.

In the first place the human coach is not bothered by the restricted bandwidth. The coach
observes several non-verbal cues indicating emotional and cognitive states like the student
being bored, angry, completely lost etc. This gives the human coach much extra information
on when to intervene.

Secondly the coach herself might display a few affective states that might have impact on the
student. Most notably ‘enthousiasm’'.

Thirdly, human coaches might us more effective instructional methods, presenting a remedy
for a multitude of possible learning problems in one transaction (Luarillard, 1990)

4. CONCLUSION

Although not much empirical evidence is available, it appears that the 'intelligence' of ITS
does not add much in terms of performance of courseware. This is consistent with the analysis
of the amount of 'intelligence' that goes into the design and implementation of traditional good
educational material.

It is therefore highly questionable if the extra work that is needed to build these ITS is worth
the effort. It might have been if this work could be re-used. It has has been suggested that due
to the separation and explication of the different types of knowledge an ITS for domain X
could be constructed from an ITS for domain Y by simply replacing the domain knowledge.
This turns out to be a far too optimistic suggestion due to the non-orthogonality of the
didactic- and domain knowledge. When it comes to practical applications the conclusion seems
justified not to invest too much in the ability of the system to generate optimal teaching
transactions on the basis of a student and/or learner model. Instead of striving for maximal
intelligence it is recommended to strive to maximal efficiency.

Some of the problems with ITS sketched in the preceding paragraphs might be fundamental.
This does not necessarily mean that ITS research is at a dead end. There is already much
spinoff. Architectures and ideas from ITS are penetrating the field of traditional CAI (Balk &
Bierman, 1990; Sandberg & Barnard, 198x). Research on dialogue systems is triggered by




ITS-research. And recently a Learner Model was used to evaluate traditional media like books
(vanLehn, 198x). The Learner Model of SOAR was used off-line to evaluate the user
friendliness, in terms of learning, of different computer interfaces (Young, 1991). These
evaluations might result in improvements of the materials.

ITS appears still the royal avenue to more understanding about individual learning because it
offers a way to explore and evaluate Learner Models. In doing so ITS research also might
have impact on new developments in AI, more particulary in machine learning. Research
could and should proceed even if we know that it will never result into an ITS with a Student
Model and a Learner Model which will actually work in the classroom.
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