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Synopsis 

Measurements are presented of inetastic energy losses, Q, dissipated in scattering events 
between a range of elements as projectiles and the noble-gas atoms neon and argon as target 
particles. Scattering angles are in the range between 10’ and 140’. The velocity of all the pro- 
jectiles is 4.38 x lo7 cm/s. Oscillations in Q as a function of the atomic number of the primary 
ion, are observed. The experimental values are compared with calculations based upon the 
semiclassical modified Firsov theory. The qualitative agreement between experiment and theory 
is satisfactory in case of argon as a target but relatively poor when neon is used as a target gas. 

1. Introduction. The energy loss per unit of distance suffered by an ion moving 

through a solid, is generally divided into a part due to elastic interactions (nuclear 

stopping power S,) and a part due to inelastic interactions of the projectile with 

the electrons of the solid (electronic stopping power S,). The latter quantity 

shows a remarkably oscillating dependence on the atomic number of the projec- 

tile Z, , and the target atom Z,le7). Neither the theory of Lindhard and Scharffs), 

which describes the stopping as the slowing down in an electron gas, nor the 

theory of Firsov, which is a friction-like model, predict these oscillations. 

As the oscillations were thought to be due to atomic shell-structure effects, it 

seemed most promising to modify the Firsov theory, because in this theory the 

inelastic energy loss is given as a function of the impact parameter. Instead of 

the statistical Thomas-Fermi model for the atom, which was used in the original 

paper by Firsov, several authors introduced Hartree-Fock electronic wave func- 

tions to account for the variations in electron density as a function of the distance 

to the nucleus10-14). 

Calculations were then performed along the same line as those of Firsov. The 
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Q values obtained by these calculations were integrated over an impact-parameter 

region and yielded electronic stopping-power values which fitted the experimental 

values surprisingly well. These experimental values were obtained by a measure- 

ment of the total stopping power from which an estimated value of the nuclear 

part is subtracted. 

A more direct test of the modified Firsov theory is possible by comparison 

with the results of single-collision small-angle scattering experiments. In this case 

the impact parameter is known from the scattering angle and no integration of 

the calculated Q values over an impact-parameter region is needed. One of the 

assumptions of the Firsov theory is that the orbit is rectilinear; this means experi- 

mentally that only small scattering angles are allowed. 

2. ,4pparatus. The experimental setup is schematically shown in fig. 1. Two 

different accelerators are used, one operating between 30 and 200 keV and the 

other below 30 keV15). The first one is equipped with a sputter ion source16) 

which furnishes ions of both solids and gases. The low-energy ion-beam machine 

has a uno plasmatron ion source. The beam passes through three aligned aper- 

tures. The first two, a and b, collimate the beam within 5’. The third diaphragm, 

c, has two functions. In the first place it prevents the ions which are reflected at 

diaphragm b from entering the analyser. Secondly it is used as a pumping impe- 

dance between the cylinder C, and the rest of the collision chamber. This small 

cylinder is evacuated with a high pumping speed. With this construction the pri- 

mary ions travel in high vacuum until a few mm before the scattering centre, so 

that they are not neutralized. A target gas is introduced into the scattering cham- 

ber which is continuously pumped by a liquid-nitrogen baffled mercury diffusion 

pump. The pumping speed is reduced to about 10 l/s in order to achieve a uniform 

gas-density distribution during the scattering experiments. The pressure is mea- 

sured w.ith an ionization gauge of the Bayard-Alpert type. It is calibrated by 

means of the continuous-flow method17), within an absolute accuracy of 2%. 

A scattering chamber 

Fig. 1, A schematic diagram of the experimental setup used for the determinations of inelastic 
energy losses of scattered ions by one collision. a = b = 0.5 mm, d = e = 0.2 mm, 

f= from0 to 2mm. 
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The scattered ions pass through two diaphragms, d and e, which in combination 
with the angular spread in the primary beam define the angular resolution (see 
4.1.). The aperture e is the entrance slit of the analyser. The analyser exit slit, f, 
is adjustable from 0 to 2 mm within an accuracy of 0.01 mm. Under optimal con- 
dition the energy resolution of the analyser, AE/E, is 4 x 10m4. Further details 
of accelerators, scattering chamber and analyser can be found elsewhere18*1g). 
The ions which have passed the analyser are counted by means of a Bendix 
multiplier, coupled to a preamplifier and a main amplifier with pulse shaper. The 
counting signal is transferred via a rate meter to the Y axis of an X-Y recorder. 
The X input of this recorder is connected to a differential voltmeter reading the 
analyser voltage with a precision better than 10m4. 

3. Experimental method. For inelastic collisions, application of the conserva- 
tion laws of energy and momentum show that measurement of the kinetic energy 
E, of the scattered particles and the scattering angle 0,) is sufficient to calculate 
the inelastic energy loss, Q, which is dissipated in this collision: 

QIEo = 2~ ~w%)f ~0s el - (1 + Y) (&J&d - Y + 1, (1) 

where EO is the primary energy and y = (MI/M,), the mass ratio of the colliding 
particles. In this equation any momentum carried off by ejected electrons has 
been neglected. Furthermore it is assumed that the target atoms are at rest. 

We measure the voltage on the analyser plates which is applied to get the scat- 
tered ions through the analyser. This voltage is proportional to the energy of the 
scattered projectiles, that are transmitted through the analyser: 

V, = cE,. W 

At a scatterjng angle of 0 degrees, while there is no target gas in the collision 
chamber, we measure the voltage, V,, which is proportional to the energy of the 
primary ions : 

v, = CE,. CW 

Combination of (2a) and (2b) yields: 

and the theoretical relation (1) goes over into the experimental relation: 

QlEo = 2~ VV-d3 ~0s f’, - (1 + Y) (v,lJ,‘o) - Y + 1. (3) 
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3.1. Error analysis. Considering the uncertainties in the individual terms of 

eq. (3) we get the maximal uncertainty in Q/E,,: 

For small scattering angles 8,) the factors cos 8, and V,/V, can be approxi- 

mated by 1. This yields: 

AEo AQ = +(AY, + AV,) + 2yEoAcos8, + - 
0 E ‘* 0 

(4b) 

In each series of measurements we determine V, before and after each plot. If 

the drift is(Av,/V,) > 2 x 10e4 we reject the result; otherwise the V,, used in the 

analysis of the plot with the help of formula (3), is found by averaging the two 

values before and after the measurement. So the relative error in V, is less than 

10-4. The experimental uncertainty in 8, is 3’, which results in an error in cos e1 

less than 3 x 10M5 in our angular range. The estimated error in Vi is AL’,/v, 

(=A V,/Vo)= 3 x 10m5. The uncertainty AEojEO, that is the accuracy with which 

the primary beam energy is calibrated, is better than 0.3 %; the product (AEo/Eo) Q 

can, compared to the other terms in (4b), be neglected. All together this gives the 

following result: 

AQ I (13 + 67) x 1O-5 x E,. (5) 

As an example we calculated the maximum error which can be expected in the 

case where neon is bombarded with 40 keV Ar+ ions. The maximum error to be 

expected is AQ < IO eV. The measured Q value in this case was 25 eV and this 

value did reproduce within 6 eV. 

4. Widths in inelastic energy-loss peaks. The observed peak width in the Q 

spectra is caused by several contributions : 

1) the angular spread of the incoming and the scattered beam caused by the finite 

apertures of the collimators; 

2) the limited energy resolution of the analyser caused by the finite apertures of 

the slits; 

3) a spread in the energy of the particles of the incoming beam (acceleration volt- 

age and ion-source instabilities); 

4) thermal motion of the target atoms; 

5) natural peak width. 

4.1. Instrumental effects. 4.1.1. Angular spread. The collimating dia- 

phragms for the primary beam are 0.5 mm and their separation is 690 mm. 
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Therefore the number of projectiles entering the collision chamber at an angle 0, 
with respect to the initial beam direction can be given as in fig. 2a, assuming that 
the first diaphragm operates as a uniform source of particles. In fig. 2b is shown 
the probability that a scattered particle, moving at an angle ((3, - (3,) with re- 
spect to the main axis of the analyser, will enter the analyser. The angle between 

A(be) ~//ft@ x P(@d8,de, tei+&=ef+6e) 

I 

-‘3 1 1 I I I 
-2 -1 0 +1 +2 +3 

- 68 (minutes) 

Fig. 2. a) The distribution of primary particles which enter the scattering chamber through an 
angle 0,. The ultimate divergence is 2.5’; b) The probability function that particles moving 
through an angle 13” enter the analyser. e1 is the scattering-angle setting. The ultimate divergence 
is 3.5’; c) The distribution of scattering angles [A (S0)] and the number of particles which are 

scattered [N (S0)] as a function of 80, observed at a given scattering-angle setting. 

this main axis and the incoming beam direction is the set value of the scattering 
angle 8,. The distribution of scattering angles observed at this set angle is calcu- 
lated by means of the integral: 

A (se) = jjfuu mu de, de,, 
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with the condition that 8, + 8, = 0, + 68. The result is shown in fig. 2c. The 
full width at half maximum is 4.6’ = Ae,. To obtain the number of particles 
which are scattered into the analyser as a function of 60 for a given set angle e1 
we have to multiply the distribution by the differential cross section. As an ex- 
ample this is done for 60 keV Ar+ -+ Ne for 8, = 15’. In fig. 2c it can be seen 
that [due to the small variation of u (se)] the FWHM is not changed and only 
the most probable scattering angle is 15” off from the set value. The effect of 
this spread in scattering angles Ad, around a given set angle 8,) is a spread 
in the observed secondary kinetic energies of the scattered particles. It causes a 
broadening of the peak in the spectrum. Assuming that the inelastic energy does 
not vary over the very small scattering-angle range of [e, - +Ae,, O1 + +Ae,], 
then the following relation holds : 

dq=[($j+($)($)]d&=O, (7) 

where CJ = Q/E0 and t, = El/E,. It follows from (7) that: 

and the spread in observed kinetic energies is: 

At, = -(aqiae,)i(aqiiat,)Ae, = (2t, sin e,) 

1~0s 8, - 10 + Y)~YI& 
Ao, . Pa) 

The spread At, causes an apparent spread in q: 

Aq = 

SO: 

Aq = - (aq/ae,) Ae, = 2yt$ sin e,he,, (9b) 

which for small scattering angles 0, reduces to 

A4 = At, = 2~ sin e,he,. (10) 

For y = 1 and 0 = 1” the spread in kinetic energy is At, = 4 x 10e5. This is in 
most of the cases an order of magnitude smaller than the energy resolution (see 
next paragraph) of the analyser. 

4.1.2. The energy resolution of the analyser. A monoenergetic beam 
passing through the entrance diaphragm of our analyser is imaged as a line with 
a width equal to the diameter of this diaphragm on the exit slit. By changing the 
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voltage on the plates this line moves over the slit. The distribution of detected 
particles as a function of the analyser voltage is a trapezium or a triangle. So the 
form of the monoenergetic line is a trapezium (in the case that the exit slit is the 
largest) or a triangle (if the entrance diaphragm is the largest). The full width at 
half maximum of these lines corresponds to a relative energy spread of an ideal 
analyser given by: 

AE/E = max (e, f )/272, (11) 

in which max (e,f) is the maximum of the widths of entrance diaphragm and exit 
slit; 272 is a geometrical factor dependent on the radius of curvature of the ana- 
lyser and the deflection anglezO). With max (e, f) = 0.20 mm, the relative spread 
At, is in the order of 7 x 10m4. Taking into account that we use a circular entrance 
diaphragm instead of a rectangular slit, as is assumed in the determination of the 
geometrical factor, At, reduces to 5 x 10e4. For small angles (aq/i%,) = -1 
so Aq = At, = 5 x 10-4. 

4.1.3. Energy spread of the incoming beam. The incoming beam has a 
certain energy spread, due to small instabilities of the high voltage and to changing 
source conditions. Together with the energy resolution of the analyser it causes 
a finite linewidth of the primary beam. If we analyze this primary beam (at 0 = 0) 
experimentally its linewidth AE]E is found to be of the order of 4 x 10a4. This 
is even smaller than the calculated energy resolution of the analyser alone. (This 
can be due to a very small misalignment such that the primary beam does not 
completely fill the entrance diaphragm of the analyser which then virtually has a 
smaller diameter; this effect is only important for 13 = 0.) It can be concluded 
that the energy spread in the primary beam is small. 

4.2. Physical effects. 4.2.1. Broadening due to thermal target mo- 
ti on. If the target gas has an absolute temperature Tand the velocity of the target 
atoms is Boltzmann-distributed then application of the conservation laws of energy 
and momentum yields in first approximation: 

AQ2 = 2kTE2, (12) 

[for the derivation of (12) see the appendix]. 
The full width at half maximum for T = 300 K is then given by: 

AQw 10 [E2(keV)]* eV. (13) 

As an example the thermal broadening for 56 keV Fe+ + Ne scattered over 
l”23’ was calculated. It was found that AQT = 3 eV. This is very small compared 
to the broadening due to the energy resolution of the analyser of 28 eV. In 
our experiments in general the broadening due to the thermal motion of the target 
atoms is negligible. 
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4.2.2. Natural peak width. In the preceding paragraphs we have discussed 
all the distributions which cause a broadening of a line in the energy spectrum of 
the scattered projectiles. However, the situation is much more complicated. 
Recent experiments in the lower primary velocity rangezl) have shown that the 
total peak is composed of several closely spaced lines each corresponding to 
excitation of a discrete excited state in one or both collision partners. For one 
distance of closest approach and one relative velocity a series of discrete inelastic 
energy losses is found. The energy resolution of our analyser is not high enough 
to resolve these lines at the primary energies which we used for the present 
paper. Therefore we observe in general one continuous peak. The width of it is 
determined by energy distance between the lowest and highest unresolved Q line, 
the broadening due to thermal motion and instrumental effects. Assuming that 
the unresolved lines within the peak are gaussian-distributed, one obtains: 

AQkserved = AE2 + AQ:mna, + AQi2nstrumenta,, (14) 

in which AE is the FWHM of the distribution of discrete inelastic energy losses. 
This equation is used in 5.2 to calculate the AE, which quantity is correlated to 
the range of accessible excitation channels. 

5. Results. 5.1. Inelastic energy losses as a function of the atomic 
number of the projectile. Peaks of a number of scattered primary ions with 
atomic numbers in the range 6 < Z1 < 29 were recorded. The velocity of the 
primary particles was the same for all the cases; the energy in keV was chosen 
equal to the mass number. The scattering angles were chosen such that the distance 
of closest approach for all cases was in the order of 0.6 A. The relation between 

- elastic energy- 
LOSS 

1 I I I 
0 50, 1 

I 
-_QW) 150 

/I 
I, I 

56cm 
I I I I 

55900 55800 
E,(eV) - 

Fig. 3. An example of the secondary energy spectrum of Fe ions scattered over lo23 by neon. 
The spectrum of the primary beam (0 = 0) is used for calibration. 
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the scattering angles and the distances of closest approach was obtained using a 
Born-Mayer potentia122). Neon and argon were used as target gases. An example 
of a spectrum recorded for 56 keV Fe+ --) Ne is shown in fig. 3. The peak re- 
corded is symmetric. This is generally the case for Z1 numbers > 13. The average 
value of Q coincides in that case with the value at the maximum of the peak. If 
the peak is asymmetric, the arithmetic mean value of Q at half-maximum height 

. 

t 120- 1 2, Y 
r,, i 0.6 A 

-Ar = 4.38 ~ xlO’cm/s 
x PRESENT WORK /+\ 

100 
a FASTRUP et al,$=O.4,/ \ 

3 _ 
o EARAT et al. 

4 80- 

B - 
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15 
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Atomic number 2, __t 

2; - Ne 
r. i 0.611 
Y = L.38x107cm/s 
x PRESENT WORK 

2 6 10 14 18 22 26 30 

Atomic number Z,.-- . 

Fig. 4. Inelastic- and elastic-energy losses of different ions passing argon and neon at a distance 
of closest approach of 0.60 A with a velocity of 4.38 x 10’ cm/s. The value of Barat et al. was 

taken from J. Phys. B: Atom. molec. Phys. 3 (1970) 207. 

is taken. This introduces an error smaller than 10%. However, for 2, numbers 
< 13 structure is observed. The average value of Q is then obtained by determin- 
ing the weighted sum of the different components of the peak. In figs. 4 and 5, 
the inelastic-energy losses are shown as functions of the atomic number of the 
projectile using neon and argon targets, respectively. The elastic energy loss, 
defined as the difference between the total energy loss and the inelastic energy 



366 D. J. BIERMAN, W. C. TURKENBURG AND C. P. BHALLA 

loss, is also given. In fig. 4 the distance of closest approach is 0.60 A while in 
fig. 5 the same plots are given for a distance of closest approach of 0.65 A. The 
figures show that there is a large shift between argon and neon data. For both 
argon and neon the minima and maxima are independent on the distance of 
closest approach in this internuclear-distance range. This roughly holds also with 
regard to the inelastic energy losses, with exception of the values of argon for Z 
numbers larger than 22. Here a drastic decrease of the Q values with increasing 
Y,, is found. 

. 
2, -Ar 

OC 
-Atomic number 2, 

i i2 16 io 2L 

-Atomic number Z, 

Fig. 5. Inelastic energy losses of different primary ions passing 

of closest approach of 0.65 A. 
argon and neon at a distance 

A possible explanation is that for these projectile-target pairs new subshells 
are penetrated at a distance of around 0.6 A, while for the other pairs no signi- 
ficant variation in overlap of shells takes place in this region of closest approach. 
This could also explain why the Q values obtained by Fastrup et dz3), which are 
measured at another distance of closest approach (0.4 A, calculated with the 
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Lens-Jensen potential), fit with our results for Z1 < 22 in the case of an argon 

target. To use these values we have corrected for the velocity assuming that Q is 

proportional to the velocity. 

5.2. Spread in inelastic energy as a function of atomic number of the 

projectile. As was discussed in 4.4., the Q peak is thought to be built up by a 

number of lines, each of them corresponding to a discrete excitation channel. 

The energy distance between these lines is too small to resolve them. From high- 

resolution measurements in the low primary energy region, it is known that the 

lines, which are then partly resolved, are mostly distributed in a gaussian way. 

Z;- Ar 

t 
5 -Atomic number 2, 
.Y 
s 

-Atomic number 2, 

Fig. 6. “Energy range of accessible excitation channels” for collision processes where different 
primary ions are scattered from argon and neon at two different distances of closest approach. 

Then we are allowed to use eq. (14), in calculating AE, the FWHM of this distri- 

bution. 

In fig. 6 these values are plotted against the atomic number of the projectile 

for two distances of closest approach. It can be seen that AE shows the same 
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oscillations as Q. This indicates, generally speaking, that if the inelastic energy 
loss is high a large number of excitation channels in a large energy region contri- 
bute to this inelastic loss. 

6. Theory. The original Firsov mode19) of the inelastic energy loss has been 
modified by Bhalla, Bradford and Reeser4) to include the shell structure of the 
atoms. The modified Firsov model is described in detail elsewhere14). Here we 
summarize the essential features. This model is appropriate for small angles of 
deflection for which cases the impact parameter and the distance of closest ap- 
proach are about the same; this is the case for the experimental data presented 
in this paper. The basic assumption of the Firsov model is that when electrons 
of one atom come under the influence of the attractive potential of the second 
atom, there is a momentum transfer equal to mu. The mass of the electron is m 

and the relative velocity of the projectile with respect to the target atom is U. A 
plane surface, which is assumed to be located at equal distance from the line of 
centers of the two atoms, divides the region of attractive potentials of the two 
atoms. The energy transfer, Q, for an impact parameter, b, is then obtained by 
calculating the contributions of the electronic flux across the surface of the plane 
and integrating over the path of the projectile. 

Q(r,) = mu [dx 4 @ dS. 
-m s 

(15) 

The total electronic flux, CD, has contributions from the projectile and the target 
atoms. The flux due to the ith shell is given by 

where yI is the radial wave function and w1 is the number of electrons in that shell. 
The average speed of the electron is defined by 

(17) 

where (Ti) is the average kinetic energy of the electron. The Hartree-Fock- 
Slater atomic model was used in the present calculations. Further, the contribu- 
tions of electrons in the outer shells were included. 

The theoretical results of Q are compared with the experimental values in 
fig. 7a for argon and in fig. 7b for neon. In both these figures, the inelastic 
energy loss is divided by the dimensionless quantity, v/vO, which is the ratio of 
the ion velocity and the Bohr velocity, It should be also noted that Q is in 
atomic units (1 a.u. = 27.2 eV). The quantity Q (ro)/(v~vo) is expected to be in- 
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dependent of u when v/v,, 5 1 and for large values of rO. To exhibit the de- 

pendence of the inelastic energy loss on ro, the theoretical values are plotted 
for two values of the distance of closest approach, ro. 

2 1, I ’ I ’ I ’ I ’ I ’ I 
2 10 14 16 22 26 30 

._-_Atomic number 2, 

Fig. 7. Theoretical calculations of Q compared with the experimental values obtained at 
r0 = 0.60 A. The distances of closest approach used in the calculations were: argon A: 0.65 A, 

B: 0.86 A; neon A: 0.61 A, B: 0.71 A. 

7. Discussion. The experimental inelastic energy loss values and the ones 
calculated on the basis of the modified Firsov theory show reasonable agreement 
in the cases where argon is used as a target. The maxima and minima are at 
about the same Z1 values. The experimental curve shows a more pronounced 
structure than the theoretical one. However, we have to bear in mind that the 
experiments only show that part of the collision processes in which the projectile 
stays singly ionized after the collision. Processes in which neutralization occurs 
are not measured by our electrostatic analyser while the theory does not discrimi- 
nate against the kind of excitation process. 
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In the case of neon, however, the agreement between theory and experiment is 
relatively poor, in particular for Z, > 26 where the experimental values decrease 
while the theoretical values increase with increasing Z, . No reason can be men- 
tioned why the theory should hold in the case of argon and breaks down in the 
case of neon. Both targets have 6 electrons in the outer shell and in both cases 
the velocity of the projectiles is much less than the orbital velocity of the electrons. 
Nevertheless the poor agreement in the case of neon suggests that the theory for 
the description of these inelastic collisions must be reviewed. 

Recent measurements21) of inelastic energy losses with higher resolution have 
shown that the total inelastic energy loss mostly can be attributed to discrete 
excitation processes in target and projectile. Each of these excitation processes 
has a certain probability to occur as a function of the distance of closest approach 
and relative velocity of the collision partners. Fano and Lichten24) have proposed 
a model for inner-shell excitation which also might be helpful to describe outer- 
shell excitation processes, although Lichten in a more recent paper25) doubts 
whether the model, without any changes, is applicable for these cases. At every 
moment during the collision the electron levels in the pseudomolecule are con- 
sidered. There are critical internuclear distances, R,, at which crossings of the 
levels occur. Transitions of electrons to an unfilled level at a crossing can leave a 
promoted electron stranded in a higher Ievel after the collision. The probabil- 
ity for such a transition is given by the we11 known Landau-Zener formula 
P=2p(l-Rp) withp=e-2”H2 ]hv(dE]dR); here H is the interaction energy be- 
tween the two states, v is the radial collision velocity and E is the energy splitting 
between the unperturbed states. Calculation of these transition probabilities as 
functions of the impact parameter and v should yield the mean inelastic ener- 
gy loss. This seems certainly the most fundamental approach to the problem. 

It is remarkable that the modified Firsov theory which has essentially a statis- 
tical nature, predicts at least partly the inelastic energy losses, which are caused by 
discrete clean atomic processes. However, there is a link between the two 
approaches, because the promotion in outer shells has also a statistical back- 
ground. Let us, for example, consider the collisions: 

Ne+ -I- Ar + Ne+* (2p4, nl) + Ar. 

In terms of the Fano-Lichten model this means that a 2p electron is promoted 
to an n level. However, there are very many n states, all leading to inelastic 
energy losses of about 35 eV. So the probability of a Q of 35 eV will largely be 
determined in a statistical way by the number of crossings. This number of cros- 
sings is in first approximation correlated to the electron densities in the different 
subshells which forms the link to the modified Firsov theory. 

Not only the number of crossings is an important parameter but also the prob- 
ability for an electron to get into the other atomic orbital. In the Fano-Lichten 



INELASTIC ENERGY LOSSES IN SMALL-ANGLE SCATTERING 371 

model crossings do not inevitably lead to a promotion but in the Firsov model, 
once you have the electron flux from one particle to the other, inelastic energy 
loss will occur. Therefore the simultaneous observation of unexcited and excited 
particles in our experiments (for Z1 < 13) is in favour of the Fano-Lichten 
model and might explain why the experimental average Q values in these cases 
are lower than the values calculated with the help of the Firsov theory in the case 
of argon. 

From inner-shell excitation studies it is found that the occurrence of crossings 
is critically linked to the atomic number. For instance it was observed that inner- 
shell excitation took place only in the lightest of the two collision partnersz3). Re- 
cently several authorsz6) have investigated the behaviour of the crossings as a 
function of Z. A further exploration of this behaviour especially for outer- 
shell levels might reveal the reason why in the case of neon the modified Firsov 
theory fails to predict the experimental values. 
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APPENDIX 

Broadening due to thermal target motion. Assuming that the target particle has. 
the relative momentum pT/po = E (E, = p.Jp,, , E,, = pJpO, E, = pz/pO; pO is 
the momentum of the primary particle), the conservation of momentum and energy 
yields the equations : 

t: cos $2 cos e2 = y+ (1 + ax) - (yt1)f cos f#Q cos 81, (A.la). 

(A.lb) 

(A.lc) 

1 + YE2 = cr + 12 + q, (A.2) 

where 

t, = WJ%, tz = &I&, q = QlEo, Y = M,lMz, 
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f31 and 8, are the scattering angles of projectile and target particle in the X-Y 
plane (the plane in which the collision is described if E = 0). 41 and $z are the 
scattering angles of projectile and target particle in a plane through the Z axis 
and ai. The initial beam direction is along the X axis. Quadrature and addition 
of (A. la), (A. 1 b) and (A. lc) yields : 

t2 = y ((1 + EJ2 + Ey2 + El + tl 

- 2tZ {E= sin bi + [(I + E,) cos 8, + ey sine,] cos $,}) (A.3) 

Combination with eq. (A.2) gives: 

q = 1 - (1 + r) t, + 2ytf {cz sin 4i 

+ cos 4, [(l + s,) cos 8, + E, sin e,]] - y (1 + 2~~). (A.4) 

For E = 0 this equation reduces to eq. (1). The thermal target motion causes a 
certain spread in tl , At,, and thus, following eq. (l), an apparent spread in q: 

(A.5) 

To find the spread in I, due to E,, E,, and E,, we have to expand the function 
t, = t, (E,, E,., E,) in a Taylor series: 

(A.61 

In first approximation we do not take into account the second and higher-order 
terms originating from the Taylor series because E 4 1. 

The factor (&,/ik,) can be found by differentiation of eq. (A.4): 

giving: 

at, Wh -=--_ 
aa, watl 

(A.7) 

(A.8) 

Introduction of eq. (A.8) into eq. (A.6) and of eq. (A.6) into eq. (A.5), yields: 

Aq = -,=~y,z $ &i* ( > i (A-9) 
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The broadening of q lines due to thermal target motion is then given by: 

- 
W =i=zY,Z 2 ‘z, 

( 1 
(A.lO) 

i 

because G, = 0 if i # j as the et are independent stochastic variables. 
If the target gas has an absolute temperature T and the velocity is Boltzmann- 

distributed we find: 

-Y -2 -2 E, = Ey = E, 
)m2ZT m. =-_I W =-_ 
!tm,vX ml YE, 

(A.1 1) 

From eqs. (A.4) and (A.ll) we get for eq. (A.10): 

AT = 4y2 {1 + tl - 2tf cos q!~ cos iI,> tkT/yE,,, 

which can be approximated by [see eq. (A.3) with si = 01: 

AT = 4t, (+kT/E,). 

so 

(A.12) 

AQ2 = 2kTE,. 

For T = 300 K this yields: 

At 

1) 
2) 
3) 
4) 

5) 
6) 
7) 
8) 
9) 

10) 
11) 

AQ = 7 [E,(keV)]* eV. 

half-maximum height we find: 

AQ = 10 [E,(keV)]* eV. (A.13) 
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