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synopsis 

Inelastic energy-loss values have been measured from gas-phase collisions and are 
applied to derive values of the electronic stopping powers in solids using a computer 
simulation model. The specific cases investigated have been 19.4 keV Ne+ in copper, 
21.0 keV Ne+ in nickel and 45.5 keV Ne+ in aluminium, both for random incidence 
and for perfect alignment along (001) or (101). These exploratory results indicate that 
the method is capable of providing realistic stopping-power values and, while probably 
less accurate than conventional techniques, should allow one to experimentally in- 
vestigate the 21 and Za oscillations in the stopping power and the transition in the 
stopping power from a channelled to a random trajectory from the point of view of 
single collisions. 

The computer model has also been used to calculate penetration profiles for the 
above systems and allows one to study the relative energy deposition by both nuclear 
and electronic collisions. A “funelling” effect by which channelled orbits are con- 
sistently forced toward the centre of the channels has been observed in the (101 > 

channels and leads to well-defined maximum ranges. 

1. Introduction. The study of ion bombardment of solid targets has 
developed rapidly during the last few years, inspired in particular by the 
development of ion-implantation techniques for doping semiconductors. 
Questions of major research interest have centred on the radiation damage 
created by the implanted projectiles as they are brought to rest, their 
eventual depth beneath the surface and their final crystallographic position. 
The key to these problems lies in an understanding of the projectile orbits 
and the way in which they lose energy. The orbit is essentially controlled by 

elastic collisions with the target atoms, while the energy loss is normally 
divided into two distinct contributionsr) : the energy lost to the target atoms 
(nuclear or elastic stopping) and the energy lost via the excitation of the 
electrons in either the target or the projectile itself (electronic or inelastic 
stopping) . 
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In general the rate of energy loss may be expressed as an integral: 

- (->i = NjAEi do@&), 

where N is the atomic density of the target, AEi is the energy lost in a single 
collision, and the subscript ““‘I refers to either electronic or nuclear processes. 

The usual method of treating nuclear stopping is to postulate an interatomic 
potential V(r) between the projectile and target atoms, calculate AEnucr as 
a function of the impact parameter s using classical scattering theory, and 
assume a random distribution of two-body collisions so that do = 2x.s ds. 

This method cannot be applied when the distribution of collisions is no 
longer random but is somehow critically linked with the projectile orbits; 
e.g., the well-known channelling effect where the projectile is confined to 

orbits near the centre of the open crystallographic channels and avoids all 
close collisions. Channelling results in a strong reduction in both the nuclear 
and electronic stopping powers. 

An alternative method to derive stopping powers in a crystalline target 
is to apply computer simulation techniques to calculate the precise orbits of 
a large number of projectiles. By recording the elastic energy transfer in each 
successive collision one can derive a stopping power as averaged over all 
projectile orbits or, alternatively, over a particular set of orbits. The latter 
case could be applied to, say, channelling. The advantage of the computer 
simulation is that the crystallographic nature of the target is implicitly 

accounted for and effects such as channelling may be investigated in precise 
detail. 

The electronic stopping, at least for heavy ions with an energy in the keV 
region as is the case with most implantation work, is primarily due to the 
excitation of bound electrons. The energy which can be transferred directly 
to the free electrons is small due to the large mass ratio. By treating the 
electrons as a degenerate electron gas Lindhard and Scharff 2) calculated a 
mean electronic stopping power valid at low velocities which was a monotonic 
function of 21 and Zst. Experimental measurements of the transmission of 
ions through thin foils, however, have shown a remarkable oscillating 
behaviour in the electronic stopping power as a function of both 21 and, 
recently, 2s. To explain this phenomenon several authorsa-7) have modified 
a theory due to Firsovs) which was originally developed to describe inelastic 
losses in two-body collisions of free particles. By making some assumptions, 
one of the most crucial being that one can describe bound electrons by the 
same wavefunctions both inside and outside the solid, one may derive mean 
electronic stopping powers. T,he correspondence between theory and ex- 

t We adopt the standard convention whereby a subscript ‘1’ refers to the projectile 
and ‘2’ to the target atoms. 
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periment has proved to be surprisingly good and suggests that it should also 

be permissable to apply experimental values of inelastic losses derived from 

gas-phase collisions to the electronic stopping within a solid. 
Small-angle scattering experiments in the FOM-institute for Atomic and 

Molecular Physics in Amsterdam have yielded inelastic energy losses as a 
function of the energy and distance of closest approach for two colliding 

atoms. These results have then been fed into a computer simulation program 
so that a specific inelastic loss is included in every elastic collision of the 

projectile. A mean electronic stopping power may be derived in exactly the 
same way as the mean nuclear stopping power. Alternatively, by following 
the projectiles until they come to rest the penetration depth and the various 
associated range distributions may be evaluated directly. The advantages 
of the computer techniques may therefore be applied to electronic losses 
as well as to the elastic. 

2. Inelastic elzergy losses during two-body collisions. 2.1. Experimental 
procedure. A beam of ions accelerated to 60 keV is directed into a 

scattering chamber filled with a target gas at a low enough pressure to 
ensure single-collision conditions. A sputtering ion source enables one to 

bombard the gas atoms with ions from a solid; e.g., Al+, Ni+ and Cu+. 
Primary ions scattering over small angles (< 2”) are analyzed using a 
cylindrical electrostatic-energy analyzer with a resolution of 4 x 10-d. An 
example of the recorded energy spectra is shown in fig. 1; the peak of the 
primary particles, 19 = 0, is used for calibration. The inelastic energy loss, 

G 
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5 60 keV Cu*,Ne 
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Fig. 1. An example of an energy spectrum of copper ions scattered over 0.0 19 17 rad 
by neon. The energy distribution of the primary beam (0 = 0) is used for calibration. 
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Q, is calculated from: 

Q 2Ml El * 
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Eo J42 ‘ Jf2 Eo 
(2) 

where Eo is the primary energy, El is the secondary energy and 13 is the scat- 
tering angle. A more detailed description of the experimental setup is given 
elsewhere a). 

2.2. Experimental results. In any collision in which 0 and Eo are 
known the distance of closest approach, ~0, may be determined from classical 
scattering theory once an interatomic potential has been postulated. In order 
to preserve the analogy with the Firsov theory and to facilitate introducing 
the results into the computer model we prefer to express Q as a function of 
~0. Figs. 2, 3 and 4 show the experimental results which were used in the 
computer calculations. 

Experimentally, as may be seen from fig. 1, the width of the scattered peak 
is much greater than the width of the primary beam, so that the inelastic- 
energy loss does not have a unique value for a given value of ~0. The total 
Q peak is thought to be composed of several closely spaced lines which are 
mostly unresolved due either to the finite resolution of the apparatus or a 
physical broadening of the lines. In cases where the structure can be re- 
solved, e.g., Al+ on Ne, Q is determined as the weighted sum of the different 
lines. Thus fig. 2 shows the experimentally weighted Q values as well as the 
elastic loss as calculated by the conservation laws. In the cases of 60 keV 

100 60 keV AI*,Ne 8 ‘elastic Loss --. 
I _: inelastic loss 
0 

Fig. 2. The energy loss of 60 keV Al+ ions scattered by neon as a function of the 
distance of closest approach. The elastic loss is calculated using the conservation laws 

of momentum and energy. 
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Fig. 3. Energy-loss measurements of Ni+ ions scattered by neon as a function of the 
distance of closest approach. 

Fig. 4. Energy-loss measurements of Cu+ ions scattered by neon as a function of the 
distance of closest approach. 

Nif and Cu-C on Ne both the total energy loss (Ea - El) and the mean 
inelastic loss Q are plotted. To apply these results to the computer the follow- 
ing analytical fits to the experimental data were derived: 

Arf -+ Ne: Q ~ [,,,,l -ro) 
(3) 

Ni+ + Ne: Q m 18/rte5, 

Cu+-+Ne: Q % 1 l/Y%, 

where Q is in eV and ~0 in A. 

(4) 

(5) 

We note from figs. 2, 3 and 4 that for Cu+ and Ni+ the elastic losses exceed 
the inelastic for YO 6 0.93 and 0.83 A, respectively, while for Al+ over the 
entire angular range of measurement the inelastic loss is larger than the 
elastic. 

2.3. Application to solids. Several objections may be raised to 
applying the gas-phase results to solids. By electrostatically measuring the 
scattered primary ions we only observe processes in which the projectile 
remains ionized, e.g. : 

X+ + Y -+X+’ + Yn+* - Q(ro, Eo), (6) 
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but not those in which the final state contains the neutral projectile: 

X+ + Y +X* + Yfl+* - Q(ro, Ea). (7) 

Moreover, the inelastic energy loss in a single collision goes into the excitation 
and/or ionization of either or both the target atom and the projectile. For ~0 

of the order of 1 A these involve mostly outer-shell processes. Since the state 
of the outer shell of energetic ions inside a solid is not well known but is 
likely to be an excited state and since the outer shell of the target atoms 
differs from that in the free state due to perturbations from the neighbouring 
atoms it is doubtful whether a collision in the solid with a velocity v and a 

distance of closest approach 10 results in the same inelastic loss as an inter- 
action in the gas with identical collision parameters. 

Ideally to apply gas-collision results in a solid we should have the Q(ro, Eo) 

function which is the weighted mean over all the Qi(ro, Eo) corresponding 
to the inelastic losses of projectiles in state “i”. We therefore require the 
equilibrium distribution of projectile states within the solid as well as more 
detailed gas collision experiments in which, for example, projectiles in 
different excited states are used. Furthermore our computer simulations will 

reverse the target and projectile and investigate the more common situation 
of Ne+ ions incident on metallic targets of Al, Ni and Cu. According to the 
Firsov theory Q is only a function of YO and the relative velocity so that the 

inversion must be accompanied by a change of energy to Ei, = (M~/M1) Eo. 
The appropriate values for Eo = 60 keV are listed in table I. Experimental- 
1~14) there is evidence that this inversion is not strictly accurate but in the 
light of our assumptions it is not a critical failing. 

On the positive side there are two points which appear to justify our 

procedure: first, the successes of the modified Firsov theory, which does not 
worry about these details, in predicting the observed oscillations in the 
electronic stopping power; and second, Snoek et a1.15) have shown that the 
inelastic energy loss of projectiles scattered by surface atoms, whose electronic 
states are an intermediate case between free and bulk atoms, is the same as 
in the gas-phase collisions. 

For these reasons the present calculations must only be regarded as 
exploring the possibilities of applying gas-phase collisions to interactions 
in solids; for the moment we only wish to determine whether or not the 
method is viable. If so it might be possible to explain some of the anomalies 
observed in the electronic stopping power, such as the 21 or 2s oscillations, 
by reference to gas-phase work. Furthermore it is of some interest to relate, 
even if only qualitatively, stopping powers and ranges with, say, the orienta- 
tion of an external ion beam. 

3. Com@hter simulations. 3.1. The model. The computer simulation 

model has been described in detail elsewhere 16-18). The elastic interaction 
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between the projectile and the target atoms is represented by the so-called 
Moliere approximation to the Thomas-Fermi potential: 

j,7@) = Z1Z2e2 ____ (0.1 e-6ria 
9, 

+ 0.55 e-1.2r’a + 0.35 e-0.3r’a), 

where the screening radius a = 0.47 (Zt + .Z$-” fi. The orbits in the three- 

dimensional crystal are calculated with good precision by separating the 
interaction into a series of independent two-body collisions, the “binary 
approximation”. With each collision we now include, in addition to the 
normal elastic energy loss, an inelastic energy loss Q as derived from the 

analytical fit to the experiments, (3) to (5). Thermal vibrations are in- 
troduced by allowing each target atom to vibrate independently about its 
equilibrium site. 

3.2. Stopping powers. To calculate both the electronic and nuclear 
stopping powers a large number of ions are incident at random positions over 
a representative area of the crystal surface. Each projectile is followed down 

to a certain depth and the energy losses via elastic collisions and electronic 
excitation are both summed en route. The stopping power for each ion is 
defined as the total energy lost divided by the depth and the mean stopping 
powers are averaged over all incident ions. Since the ion trajectories are never 
straight lines, their total path length exceeds the penetration depth and our 
definition of a stopping power is in effect the rate of energy deposition along 
the beam direction. The results are independent of depth so long as the depth 
considered is long enough that some sort of equilibrium is attained (in the 
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Fig. 5. Inelastic stopping-power distributions for 19.4 keV Ne+ ions in copper given 
as the fraction of ions with an inelastic stopping power in a given energy interval. It 
can be seen, for example, that nearly all the ions directed into the <OOl> channel had 

an inelastic stopping power of 8 eV/A. 



228 D. J. BIERMAN AND D. VAN VLIET 

case of chanelled trajectories this means large compared to the “wavelength” 

of the orbits) and yet not deep enough to allow a significant change in the 
energy. 

Fig. 5 shows the distribution in the electronic stopping power for 19.4 keV 
Nef ions in copper, both for a non-crystallographic orientation and for 
perfect alignment with the (001) and <IO1 > channels. The distributions in 
the latter cases only include the channelled ions since there is also a high- 
energy loss tail corresponding to that small fraction of the beam which lands 
near an atomic row and is dechannelled. The width of the random peak is 

essentially statistical and over larger depths would become narrower. The 
relatively narrow spread of the channelled losses corresponds to variations 
in the stopping power from different channelled orbits. Ions of different 
transverse energy sample different distributions of impact parameters and 

hence lose energy at different rates. The sharp peak implies that the stopping 
power is not very sensitive to multiple-scattering effects which change the 
distribution of transverse energy. We have already noted from fig. 1 that 
there is a spread of Q values in any collision which, since we assume a unique 
relationship between Q and ~0, is missing from our simulations. In all three 
cases investigated, the full width at half maximum of this spread reaches 
values of up to 80% of the Q values) and therefore exceeds greatly the 

orbital spread. 
Table I summarizes the mean electronic stopping powers obtained for Ne+ 

in Al, Ni and Cu. The channelled results are consistently lower than the 
random results; the fractional reduction varies from 85% to 35% so that 
no one single rule is evident. The stopping powers are lower in the more 

TABLE I 

Electronic stopping powers for Ne+ 

(eV/Q 

Crystal (101) <OOl> Random 

45.5 keV Al 2.2 3.65 14.4 
21.0 Ni 14.5 16.1 25.1 
19.4 CU 7.4 9.1 18.7 

TABLE II 

Nuclear stopping powers for Ne+ 

(eV/@ 

Crystal <lOl> <OOl> Random 

Al 0.36 0.69 28 
Ni 1.37 2.15 70 
cu 0.68 2.5 54 
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open <lOl) channels than in <OOl), as one would expect from the decrease 

in Q with increasing ~0. Table II lists the comparable nuclear stopping powers, 
and now variations by factors of almost 100 are found between the random 
and channelled data. For a random orientation the nuclear stopping power 
at these energies exceeds the electronic by a factor of 2 to 3 but in the 
channelled cases it is generally an order of magnitude smaller. This is due 
to the fact that AEnucr is far more sensitive to s than is Q; in the limit of 

large impact parameter s for the Moliere potential (8), AEnucrcc e-“.6s!a. 
The distribution of nuclear stopping powers, not plotted, is correspondingly 
much wider. 

The channelled results may be compared with the minimum possible 

stopping powers that would apply to a best-chanelled ion moving perfectly 

TABLE III 

Minimum channelled stopping powers for Ne+ 

(eV/A) 

Crystal Electronic Nuclear 

(101) (001) (101) (OOl> 

Al 0 0 0.036 0.050 
Ni 11.6 14.8 0.25 0.36 
CU 5.4 7.6 0.23 0.37 

10 

8 0 Ekctronic 

6 
X Nuclear 

Fig. 6. The variation of the mean electronic and nuclear stopping powers for 19.4 keV 
Ne+ ions in copper as a function of the angle of alignment, kn, relative to (101). The 

lattice temperature was 0°C. 
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down the mid-channel axis. The latter have been listed in table III. In the 
Cu and Ni channels the mean electronic stopping powers are only about 25yh 
greater than the minimum; in aluminium the channel radii exceed the largest 

value of ~0 for which inelastic losses could be detected experimentally but 
a zero-energy loss rate is no doubt physically unrealistic. The minimum 
nuclear stopping power is considerably less than the mean for the reasons 

stated above. 
Fig. 6 illustrates the variation in the mean (i.e. averaged over both 

channelled and non-channelled orbits) stopping powers for 19.4 keV Ne+ 

ions in copper as a function of the alignment angle relative to < 10 I>. Once again 
the electronic stopping is relatively insensitive to slight misorientations while 
the nuclear stopping is far more sensitive and shows a larger total variation. 
The absence of a pronounced shoulder, in particular for the electronic case, 
is due to the fact that the total stopping power is not exclusively controlled 

by very low impact parameter collisions (which would show a more pro- 
nounced shoulder) but is also sensitive to the more frequent large impact 
parameter collisions. The angular half-widths are quite close to the Lind- 

hardrs) characteristic angle I/Z; in this case 9.0”. 

TABLE IV 

Random electronic stopping powers for Ne+ 

(eV/A) 

Crystal Computed Lindhard and Scharff 2) Experimental 14) 

45.5 keV Al 14.4 20.2 18.5 
21.0 Ni 25.1 28.0 
19.4 CU 18.7 25.6 - 

Table IV compares the random electronic stopping powers with the 

Lindhard and Scharff 2) formula and also with the one available experimental 
result of Ormrod et aZ.14) for Ne+ in Al. The results for both Al and Cu are 

significantly lower than the Lindhard values and the single experiment 
while the nickel result is much closer. It must be stressed, however, that 
the random results are not expected to be particularly accurate. For example 
it is probably not valid to extrapolate the experimental results back to 
high-Q, low-r0 collisions which can be essential in determining the random 
stopping power. (This objection does not apply to channelled stopping 
powers.) Futhermore in the computer model we somewhat arbitrarily set 
an upper limit of one half the lattice parameter to the impact parameters 
considered; increasing this cutoff could artificially bring the results more 
into line with the Lindhard formula. This just illustrates how sensitive in 
fact our “quantitative” results are to the assumptions made in the model. 

Since the inelastic losses have only been calculated at one energy we 
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cannot attach an energy dependence to our results. However, both the theo- 

retical models of Firsovs) and Lindhard and Scharff a) give an Et dependence 

for the electronic stopping power so that it does not seem totally inappro- 
priate to multiply the Q values given in (3), (4) and (5) by a factor (E/E;)*. 
We shall make use of this approximation in deriving ranges. From the 
momentum approximation we know that the channelled nuclear stopping 
powers go as E-1 ; no energy dependence has been worked out for the random 
nuclear stopping power. 

3.3. Ranges. In the regime of projectile masses and energy that we are 
concerned with it is more common and of more direct application to measure 
the penetration of the implanted ions rather than their mean stopping 

power. We have extended our computations to calculate range profiles with 
the assumption that the inelastic losses obey an Et relationship as men- 
tioned above. Starting with a large number of randomly positioned ions 
on the entrance surface, as above, each ion is followed until its energy drops 

low enough that it should be trapped within the crystal. We have somewhat 
arbitrarily taken 1 keV as the lower energy limit since the binary collision 
model starts to become unreliable at lower energies and the residual range 
at 1 keV should be comparatively small. 

The range profiles obtained for 19 keV Ne+ ions in copper for a number 
of different orientations are plotted in fig. 7 as integral distributions, i.e. 
the fraction of ions not yet stopped after a given depth measured parallel 
to the beam direction. The random profile corresponds to an incident 

t ’ r 8 ‘I 0 ’ $8 I t 0 1 I I1 8 
0 1000 2000 3000 

_----w penetration depth 6) 

Fig. 7. Range profiles of 19 keV Ne+ in copper for different orientations. The lattice 
temperature is 0°C. Perfect alignment is assumed. 
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direction well off any low-index row or plane. The lattice temperature was 
0°C and we have assumed perfect beam collimation. 

It is quite evident that the aligned beams have distinctly longer penetration 
depths than the random orientation, due primarily to the almost complete 
absence of nuclear stopping and to a lesser extent by the reduction in elec- 
tronic stopping. Such an effect is of course well known both from experiments 
and theory. Thus there is a strong qualitative resemblance between our 
profiles and those measured experimentally in a number of f.c.c. metalsso), 
as well as to those obtained by Robinson and Oensr) for 5 keV Cu ions in 
Cu using a computer simulation model in which only the nuclear stopping 
was considered. There is therefore no startling effect due to the introduction 
of inelastic losses that are sensitive to the impact parameter. 

Two particular points of interest might be mentioned: 
(1) A very well-defined maximum range is found in the < 10 1) channels but 

not in (either <OOl) or < 112), the next most open channels. This is caused 
by some process which consistently tends to focus or “funnel” a large 
fraction of the ions toward the centre of the channel where they experience 
a constant and minimal stopping power. This funnelling effect has only been 
observed in the < lOl> channels. The effect is further illustrated in fig. 8 
which illustrates the flux of ions (relative to the flux at the incident surface) 
found near the mid-channel axis as a function of depth in both < 101) and 
<OOl) channels. The centre of any channel normally samples a higher than 
normal flux since it is accessible to all channelled ions whereas positions near 
the atomic strings are only acsessible to those ions of high transverse energy. 
The resultant variation in flux is known as flux peakingss). In the <OOl> 
channels multiple scattering tends to increase the transverse energy such 
that the accessible area for each ion also increases and the central flux 

32-l 
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Fig. 8. The normalized flux at the mid-channel axis in different channels for 19 keV 
Ne+ on copper. The central flux in the (101) channel increases with depth due to the 

funnelling effect. 
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decreases with depth. The range in this case is essentially determined by 
how long the ions can remain in their preferential orbits before being de- 

channelled. On the other hand the central flux in the <lOl> channels 
increases with depth as funelling accentuates the normal flux peaking until 

it can reach a value of almost 25 times normal. The origin of the effect has 
not yet been discovered. It is not, however, the “damping” effect mentioned 
by Lindhardig) by which the electronic stopping reduces both the total 

energy and the transverse energy proportionately. Thus in fig. 8 the open 
points were obtained with’ no inelastic losses; the solid points, with the in- 
elastic loss (5) included. Within the expected statistical errors, of the order 

of lo%, no significant difference is found between the two. It is therefore 
evident that funnelling is somehow associated with the elastic collisions but 
it does not seem possible to explain it by involving the usual continuum 
approximation. For example the maximum flux accumulates not at the 
point of minimum continuum potential energy in the <lOl> channel but at 
its geometric centre, the point of intersection of the (010) and (101) atomic 

planes. Since the channel is diamond shaped the positions of minimum 

average potential energy are displaced from the centre along the long (1OI > 
axis. The importance of a funnelling effect, if confirmed, for penetration 
studies is obvious. 

TABLE V 

Total energy dissipated by 19 keV Ne+ ions slowing down to 1 keV in copper 

(in keV) 

Electronic Nuclear 

Orientation Total AEnucl > 20 eV AEnuel -z 20 eV 

Random 3.0 15.0 14.6 0.42 
(111) 3.4 14.6 14.1 0.47 
<112) 5.1 12.9 12.1 0.82 
<OOl) 5.8 12.2 11.1 1.1 
(110) 11.3 6.7 4.6 2.1 

(2) The mean energy dissipated by 19 keV Ne+ slowing down to less than 
1 keV in copper in both electronic and nuclear processes is listed in table V 
for the five orientations tested. In all cases except <lOl> the energy has 
gone predominantly to the target atoms via nuclear collisions, largely 
independent of the orientation. The elastic energy transfers may be further 
analyzed in terms of those above and below 20 eV, corresponding roughly 
to the transition from displacement to non-displacement knock-ons. 
According to the simplest models of atomic displacement cascades the 
number of displaced atoms should be directly proportional to the energy 
transferred in knock-ons above the displacement threshold. These results 
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indicate that despite the large differences in range there is a much smaller 

change in the number of displaced atoms in going from a random orientation 
to all chanelled orientations except < 110). Due to the above-mentioned 
funnelling effect the latter shows an approximately threefold reduction. 

On the other hand there are significant changes in the energy distribution 

of the primary knock-ons if not in the total energy. The channelled orienta- 
tions show a strong preference for low-energy transfers as witnessed by the 
significant increases in the sub-threshold losses. It is therefore not unreason- 
able to expect that the eventual damage state would differ considerably 
between a channelled and a random orientation. For example, recent worksa) 

on the damage produced at ion irradiated copper surfaces indicated that 
surfaces are damaged through knock-ons with energies between 9 and 36 eV, 
which can initiate focussed collision sequencies directed towards the surface. 

Preliminary results for Ne+ in Ni are qualitatively similar to those in Cu. 

So too are the Al results with the one exception that the combination of 
funnelling along < 101) and the zero minimum electronic stopping power 

(see table III) leads to inordinately long < 101) ranges. Although the ex- 
perimental results showed that the inelastic losses for aluminium exceed 
the elastic ones for large impact parameters, the total energy losses are 
obviously dominated by the relatively infrequent large-angle scattering 
events where the nuclear losses are greater; hence the total energy lost via 
nuclear collisions exceeds that due to electronic collisions in this case as well. 

4. Conclusions. The calculation of an inelastic energy loss in addition to 
the normal elastic loss for each individual collision is more consistent with 
the use of computer simulations to study ion bombardment of solids than 
the introduction of a mean electronic stopping power to account for the 

inelasticity of the collision processes. However, as we have already stressed 
the present series of calculations must be viewed as exploratory. At this 
point it does appear that the application of inelastic energy losses obtained 
from gas-gas scattering experiments to the derivation of electronic stopping 
powers in solids yields reasonable, if somewhat low, values. We would 
certainly not claim that the method could be made more accurate than 
conventional techniques; nevertheless, it does offer one or two interesting 
possibilities for qualitative studies, e.g. the 21 and 2s oscillations in the 
electronic stopping power in terms of individual collisions, or the relation- 
ship between the electronic stopping power and the orbits. Qualitatively the 
following conclusions may be drawn from the computations: 
(1) The ratio of the channelled electronic stopping power to that in a 

random medium can vary considerably from channel to channel or 
from one atom-ion system to another. 

(2) The variation in electronic stopping powers over individual channelled 
trajectories is small compared to the mean so long as the inherent width 
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of the inelastic loss per collision is not included. For this reason the 
mean electronic stopping is insensitive to, say, multiple scattering or 
slight misorientations. 
The reduction in the mean nuclear stopping power for channelled 
alignment as well as the variation over individual trajectories are 
significantly greater than in the electronic case. 
The relative penetration along different channels is not altered qualitati- 
vely by introducing an impact-parameter sensitive inelastic loss in 
addition to the nuclear loss. 
An anomalous effect, termed “funnelling”, in the <lOl> channels ac- 
centuates the flux-peaking behaviour and leads to a well-defined 
maximum range. The reason for this phenomenon might be found in 
reduction of the mean transverse energy due to breaking down of the 
continuum potential model for < 101) strings. Indeed, computer simu- 
lations of reflection of ions at glancing incidence on surface stringssa) 
show cases in which the mean reflection angle is smaller than the 
mirror reflection angle. 
Despite the sensitivity of the range profile to orientation, the distri- 
bution of the total deposited energy into nuclear and electronic compo- 
nents is much less sensitive to orientation. There is, however, a marked 
enhancement of low-energy elastic transfers for channelled orientations. 
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